and visitors to immerse themselves in a multicultural environment, learning about different customs, traditions, and lifestyles. Whether you’re looking to expand your global perspective, meet new friends [...] Want to Participate? Are you interested in showcasing your culture through food, fashion, or performance ? We’d love to have you be part of International Day! This is a fantastic opportunity to: Present [...] Welcome to International Day! Join us at Campus Weiden on May 22 from 13:00 – 18:30 for a vibrant celebration of cultures from around the world! Experience an exciting lineup of activities, meet international
generative, AI-based design. Here you will learn to develop visual concepts for apps, websites and interactive experiences, to design intuitive interfaces and to reach and inspire people using media design [...] development, for example. Application Admission requirements Would you like to apply for the Digital Design course? To be admitted to the course, you need a general higher education entrance qualification, [...] compelling visual communication. Designers play a crucial role in optimizing products and services to meet the needs and expectations of users and communicate them consistently and effectively. Depending
Practical Machine Learning Tools and Techniques, Morgan
Kaufmann, 2018.
• A. Géron: Hands-on Machine Learning with Scikit-Learn, Keras and Tensor Flow, O’Reilly, 201.
• S. Raschka: Machine Learning mit Python [...] Einsatzgebiete von Reinforcement Learning
Problemstellung und Grundbegriffe
Markov-Prozesse
Temporal Difference Learning (z.B. Q-Learning, SARSA)
Deep Reinforcement Learning
Lehrmaterial/Literatur
Teaching [...] Nachbereitung sowie KI.Meeting)
Lernziele/Qualifikationen des Moduls
Learning Outcomes
Das Modul besteht aus zwei Vorlesungsteilen KI.Ethik und KI.Kognition sowie einem KI.Meeting.
Nach dem erfolgreichen
Practical Machine Learning Tools and Techniques, Morgan
Kaufmann, 2018.
• A. Géron: Hands-on Machine Learning with Scikit-Learn, Keras and Tensor Flow, O’Reilly, 201.
• S. Raschka: Machine Learning mit Python [...] Einsatzgebiete von Reinforcement Learning
Problemstellung und Grundbegriffe
Markov-Prozesse
Temporal Difference Learning (z.B. Q-Learning, SARSA)
Deep Reinforcement Learning
Lehrmaterial/Literatur
Teaching [...] Nachbereitung sowie KI.Meeting)
Lernziele/Qualifikationen des Moduls
Learning Outcomes
Das Modul besteht aus zwei Vorlesungsteilen KI.Ethik und KI.Kognition sowie einem KI.Meeting.
Nach dem erfolgreichen
ce): The students are able to combine knowledge and skills
from the basic modules to derive and develop new solutions. The have the competence to discuss issues related to energy storage in
interdisciplinary [...] Psychological Association. The Official Guide to APA Style (7th Ed.) Washington.
Carlson, K. A. & Winquist, J. R. (2017). An Introduction to Statistics. An Active Learning Approach. SAGE.
Creswell, J. W. & Plano [...] Ability to recognise legal problems in energy/environmental law, identification of the most important applicable regulations
Independent application of regulations relevant to practice
Ability to identify
Getting to know and learning to assess basic business management methods.
• Social competence: Students learn how to convey information clearly, actively listen, and adapt their communication style to different [...] al Competence: Interns learn to
apply theoretical knowledge learned in the classroom to real-world situations, enhancing their expertise. • Social Competence: Interns learn to
take initiative, work [...] Gewichtung
Learning Objectives/Competencies to be Assessed
Zu prüfende Lernziele/Kompetenzen
portfolio
examination
Learning portfolio (100%) The Learning Portfolio is used to check the entire
Bayern
SU Kl oder ModA oder
Präs oder mdlP
1 16 INT International Affairs & Intercultural Meeting 5 4 Heckmann Heckmann SU/Ü ModA
2 21 SK1 Symbolische Künstliche Intelligenz 1
(Logik & Semantik) [...] 2 24 INF Informatik Grundlagen 5 4 Wiehl Wiehl SU/Ü Kl
90 Minuten
2 25 EKM Ethik, Kognition & Meeting 5 4 Heckmann Heckmann SU/Ü Präs
2 26 BWI Betriebswirtschaftslehre &
Innovationsmanagement
5 [...] Software Engineering für KI 5 5 Rebholz Rebholz, Neumann SU/Ü Kl
90 Minuten
5 51 ML1 Machine Learning 1 5 4 Brunner Brunner, Bergler SU/Ü Kl
60 Minuten
5 52 BCN Big Data, Cloud & NoSQL 5 4 Neumann
AI Security and Privacy
AML Advanced Topics in Machine Learning
AURE Autonomous robots
CVAE Computer Vision and AI
DEV Deep Vision
DPLE Deep Learning
EMI Embedded Intelligence
FL2 Foreign Language 2
SARA [...] MAI BC
Fächer
Name Langname
BLOCK Blockveranstaltung
INT International Affairs & Intercultural Meeting
PRS Programming Starter
ROS Robotics Starter
WEB_Ue Web-Technologies (Übung)
WEB_VL Web-Technologies
Mobile and Ubiquitous Computing (Vorlesung)
ML1 Machine Learning 1
PMA Projektmanagement und agile Entwicklungsmethoden
RLE Reinforcement Learning
SEK Software Engineering für KI
SWE_2 Software-Engineering [...] 20:30
IK 1
Fächer
Name Langname
FL1 Foreign Language 1
INT International Affairs & Intercultural Meeting
MAT Mathematics Starter & Technical Language
PRS Programming Starter
ROS Robotics Starter
WEB_Ue [...] (Übung)
MFI1_VL Mathematik für Ingenieure 1 (Vorlesung)
PK 2 Programmieren für KI 2
RLE Reinforcement Learning
SK2_Ue Symbolische Künstliche Intelligenz 2 (Übung)
SK2_VL Symbolische Künstliche Intelligenz 2
accordimg to catalogue
One Intercultural
Competence Course
accordimg to catalogue
One Intercultural
Competence Course
accordimg to catalogue
.
One advanced course
according to
Catalogue [...] advanced course
according to
Catalogue
One advanced course
according to
Catalogue
One of the
soft skills
according to
catalogue
One advanced course
according to
Catalogue
One advanced [...] advanced course
according to
Catalogue
One advanced course
according to
Catalogue
One advanced course
according to
Catalogue
One advanced course
according to
Catalogue
Phase I:
3.
1 14 INF Informatik Grundlagen 5 4 Wiehl Wiehl SU/Ü Kl
90 Minuten
1 15 EKM Ethik, Kognition & Meeting 5 4 Heckmann Heckmann SU/Ü Präs
1 16 BWI Betriebswirtschaftslehre &
Innovationsmanagement
5 [...] Software Engineering für KI 5 5 Rebholz Rebholz, Neumann SU/Ü Kl
90 Minuten
4 41 ML1 Machine Learning 1 5 4 Brunner Brunner, Bergler SU/Ü Kl
60 Minuten
4 42 BCN Big Data, Cloud & NoSQL 5 4 Neumann [...] SpringSchool 5 4 Heckmann Heckmann, Dozierende der Fakultäten
EMI/MBUT
Sem Präs
6 61 ML2 Machine Learning 2 5 4 Brunner Brunner, Levi SU/Ü, Pr ModA
6 62 KPG KI Projekt Gaming 5 4 Meiller Meiller, Nierhoff
field of deep
learning on their own, while also learning from the views and approaches of others to further deepen their understanding. Overall, it
helps students to learn not only how to self-organize [...] Machine Learning, Springer, 2006.
• F. Chollet: Deep Learning with Python, Manning, 2018. (deutsche Version bei mitp Professional, 2018)
• Géron: Hands-On Machine Learning with Scikit-Learn, Keras, and [...] practical machine learning tools and techniques, Morgan Kaufmann, 2018.
A. Géron: Hands-on Machine Learning with Scikit-Learn, Keras and Tensor Flow, O'Reilly, 2018.
Raschka: Machine Learning with Python:
Definitive Guide to ARM Cortex-M3 and Cortex-M4 Processors, Newnes, 2013
D. W. Lewis: Fundamentals of Embedded Software with the ARM Cortex-M3, Pearson, 2012
M. Trevor: The Designer’s Guide to the Cortex-M [...] Kontaktstudium: 60 h (4 SWS)
Eigenstudium: 90 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden [...] ung des Präsenzunterrichts
und Projektarbeit)
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden
Definitive Guide to ARM Cortex-M3 and Cortex-M4 Processors, Newnes, 2013
D. W. Lewis: Fundamentals of Embedded Software with the ARM Cortex-M3, Pearson, 2012
M. Trevor: The Designer’s Guide to the Cortex-M [...] Kontaktstudium: 60 h (4 SWS)
Eigenstudium: 90 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden [...] ung des Präsenzunterrichts
und Projektarbeit)
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden
achievements of previous studies can only be credited if the learning outcome can be attributed to a Master
level or corresponds to the learning outcome of a module in the OTH Master's degree programme. [...] Berechnung
Workload:
According to § 8 para. 1 sentence 3 BayStudAkkV, the following applies: One credit point is based on a
workload of 25 to 30 hours.
To calculate the workload, a distinction [...] 3.4 Master´s-Degree and Service Learning
Masterabschluss und Service Learning
ID Name
02003 Colloquium
00850 Master´s Thesis
00851 Service Learning
page
8
Inverted Classroom, Peer Instruction, Collaborative Learning, Problem
Based Learning, Learning on Demand, Micro-Learning)
3. Blended-Learning: Modelle, Vor- und Nachteile, Best-Practice Beispiele [...] (2018). Handbuch E-Learning: Lehren und Lernen mit digitalen Medien. UTB.
Arshavskiy, M. (2017). Instructional Design for eLearning: Essential guide for designing successful eLearning courses. CreateSpace [...] Dirksen, J. (2016). Design for How People Learn. New Riders.
eLearning Industry Inc, https://elearningindustry.com. Zuletzt geprüft am 11.08.2020.
eLearning Journal Online, https://www.elearning-journal
Inverted Classroom, Peer Instruction, Collaborative Learning, Problem
Based Learning, Learning on Demand, Micro-Learning)
3. Blended-Learning: Modelle, Vor- und Nachteile, Best-Practice Beispiele [...] (2018). Handbuch E-Learning: Lehren und Lernen mit digitalen Medien. UTB.
Arshavskiy, M. (2017). Instructional Design for eLearning: Essential guide for designing successful eLearning courses. CreateSpace [...] Dirksen, J. (2016). Design for How People Learn. New Riders.
eLearning Industry Inc, https://elearningindustry.com. Zuletzt geprüft am 11.08.2020.
eLearning Journal Online, https://www.elearning-journal
Institute of Applied
Language Studies
City Center Tour – from UWB campus to Brewery
Pilsner Urquell Brewery Tour
Dinner
Departure to Amberg
Wednesday
June 4th
Day 3
Amberg + Weiden, Germany [...] Workshop “Vitality for Performance” by Prof. Jan von Zwieten
Trip to Weiden
Campus Tour, Social Event KOMOpivo (Beer tasting)
Departure to Amberg
page
Czech-German Staff Week 2025 [...] AW, UWB + EUPeace Alliance
Participants’ presentations of their institutions
Coffee Break and Meeting with faculty representatives
Campus Tour and City Center Tour
Dinner
Tuesday
June 3rd
Institute of Applied
Language Studies
City Center Tour – from UWB campus to Brewery
Pilsner Urquell Brewery Tour
Dinner
Departure to Amberg
Wednesday
June 4th
Day 3
Amberg + Weiden, Germany [...] Workshop “Vitality for Performance” by Prof. Jan von Zwieten
Trip to Weiden
Campus Tour, Social Event KOMOpivo (Beer tasting)
Departure to Amberg
page
Czech-German Staff Week 2025 [...] AW, UWB + EUPeace Alliance
Participants’ presentations of their institutions
Coffee Break and Meeting with faculty representatives
Campus Tour and City Center Tour
Dinner
Tuesday
June 3rd
forschung
Studi-Kino
Studi-Kino
Studi-Kino
Kirschblüten-
festival
Speed
Meeting
Billiard &
Dart
Good to Know
8. April Bewerbungsworkshop AM
9. April Bewerbungsworkshop WEN
29. April [...] page
Bierpong-
Stammtisch
Opening Party
Studieninfotag
Studikino
Ersti-Tag
Good to Know
20. März Medieninfotag
24.-27. März Vorverkauf Opening
10
17
24
31
11
18 [...]
Studi Kino
Studi-Kino
Studi-Kino
Start Prüfungs-
anmeldung
Careerday
Weiden
Good to Know
21. Mai Simulierte Vorstellungsgespräche mit Wirtschaftsjunioren
5
12
19
26
6
Verfahren (z.B. XAI, Embedded AI, semi-/self-supervised learning, active learning, federated learning,
contrastive learning, transfer learning, DL für Audiosignale)
Lehrmaterial / Literatur
Teaching [...] Practical Machine Learning Tools and Techniques, Morgan Kaufmann, 2018.
A. Géron: Hands-on Machine Learning with Scikit-Learn, Keras and Tensor Flow, O’Reilly, 2018
Raschka: Machine Learning mit Python: das [...] and Machine Learning, Springer, 2006.
F. Chollet: Deep Learning with Python, Manning, 2018. (deutsche Version bei mitp Professional, 2018)
A. Géron: Hands-On Machine Learning with Scikit-Learn, Keras, and
students will be able to
understand, categorize and analyze cultures according to chosen cultural dimensions and taxonomies
understand, judge the benefit of different tools used to train personnel [...] solutions to deal with conflict in managing intercultural groups
analyze and adapt own behavior in intercultural situations as well as to evaluate behavior of others and advise them appropriately to be
[...] assimilators and critical incidents are investigated in their use to teach cul-
tural awareness. Students are given the opportunity to use these tools in both theoretical and practical exercises. Additionally
and Machine Learning, Springer, 2006.
F. Chollet: Deep Learning with Python, Manning, 2018. (deutsche Version bei mitp Professional, 2018)
A. Géron: Hands-On Machine Learning with Scikit-Learn, Keras, and [...] Verfahren des Supervised Learning (z.B. baumbasierte Ansätze, SVM, Ensemble-Methoden)
• Grundlegende Verfahren des Unsupervised Learning (z.B. PCA, k-means Clustering)
• Machine Learning in Python mit der [...] Hands-on Machine Learning with Scikit-Learn, Keras and Tensor Flow, O’Reilly, 2018
W. McKinney: Datenanalyse mit Python, O’Reilly, 2018
S. Raschka: Machine Learning mit Python: das Praxis-Handbuch für
Practical Machine Learning Tools and Techniques, Morgan Kaufmann, 2018.
A. Géron: Hands-on Machine Learning with Scikit-Learn, Keras and Tensor Flow, O’Reilly, 2019.
S. Raschka: Machine Learning mit Python [...] Verfahren des Supervised und des Unsupervised Learning
• Implementierung und Anwendung von Machine Learning-Methoden in einer Software-Bibliothek (z.B. Scikit-learn)
Lehrmaterial / Literatur
Teaching [...] TensorFlow 2 und Scikit-learn: das Praxis-Handbuch für Data Science, Deep Learning und
Predictive Analytics, mitp-Verlag, 2021.
C. M. Bishop: Pattern Recognition and Machine Learning, Springer Verlag, 2016
des Workload
According to § 8 para. 1 sentence 3 BayStudAkkV, the following applies: One credit point is based on a
workload of 25 to 30 hours.
To calculate the workload, a distinction [...] preparation and follow-up of the learning material
• Exam preparation = hours spent preparing for an examination event
• Examination workload = hours required to complete the examination
• [...] university must be
submitted to the Students` Office after enrollment at OTH. Subsequently, the respective lecturers will check
whether the subjects already taken correspond to the requirements of our subjects