int true
Author wbogner
producer Microsoft: Print To PDF
access_permission:can_modify true
pdf:docinfo:producer Microsoft: Print To PDF
pdf:docinfo:created 2022-01-22T09:27:39Z
Microsoft [...] Dipl.-Ing. David Wagner
Johannes Dettelbacher, M.Sc
Bezeichnung engl.: Introduction to Machine Learning in Python
Referent(en): Dipl.-Ing. David Wagner
Johannes Dettelbacher, M.Sc.
Hochschule [...] Fluid
Dynamics
Modulverantwortung:
Prof. Dr.-Ing. Stefan Beer
Bezeichnung engl.: Introduction to Computational Fluid Dynamics (CFD)
Referent(en): Prof. Dr.-Ing. Stefan Beer, OTH Amberg-Weiden
V
Studierenden solide
Grundlagen in Deep Learning erworben. Insbesondere sind sie in der Lage:
den Stand der Technik von Machine Learning und Deep Learning zu verstehen
können die verschiedenen [...] int true
Author wbogner
producer Microsoft: Print To PDF
access_permission:can_modify true
pdf:docinfo:producer Microsoft: Print To PDF
pdf:docinfo:created 2023-01-21T10:03:02Z
Microsoft [...] Maschinelles Lernen
Modulverantwortung:
Sebastian Wilhelm
Bezeichnung engl.: Introduction to Machine Learning
Referent(en): Wilhelm, Sebastian:
Kontakt: sebastian.wilhelm@th-deg.de
Voraussetzungen:
Studierenden solide
Grundlagen in Deep Learning erworben. Insbesondere sind sie in der Lage:
den Stand der Technik von Machine Learning und Deep Learning zu verstehen
können die verschiedenen [...] Dipl.-Ing. David Wagner
Johannes Dettelbacher, M.Sc.
Bezeichnung engl.: Introduction to Machine Learning in Python
Referent(en): Dipl.-Ing. David Wagner
Johannes Dettelbacher, M.Sc.
Hochschule [...] Dr. Bogner
DLBC-I
Deep Learning Bootcamp
Modulverantwortung:
Prof. Dr. Alexander Schiendorfer
Bezeichnung engl.: Deep Learning Bootcamp
Referent(en): Prof. Dr. Alexander
(2019). Hands-on machine learning with scikit-learn, keras, and
TensorFlow (2nd ed.). Sebastopol, CA: O’Reilly Media.
Bishop., C. (2016). Pattern Recognition and Machine Learning. New York, NY:
Springer [...] Studierenden solide
Grundlagen in Deep Learning erworben. Insbesondere sind sie in der Lage:
den Stand der Technik von Machine Learning und Deep Learning zu verstehen
können die verschiedenen [...] concepts and their functionality
Introduction to Robot operation system (ROS)
Introduction to mapping and pathfinding algorithms
Introduction to robotic simulation tools
Insight into robot
Elektromobilität
Geo-Verfahren:
Routing, Connectivity Maps
Künstliche Intelligenz:
Machine Learning, Data
Mining
Kommunikation:
C-V2X (LTE, LTE-A)
Fahrzeug:
Sensorik, Bussysteme,
ROS
[...] Programmiersprache und Konzipierung verteilter Systeme
Implementierung unter Verwendung von Device-to-Device Kommunikation
Einarbeiten in Infrastrukturkommunikation
Automotive Engineering @ OTH
14 [...] n in Fahrzeugkommunikation
Automotive Engineering @ OTH
14.11.2019
MAPR Vorstellung
7
How to MAPR @Automotive?
1. Melde dich bei uns!
2. Auswahl des MAPR-Forschungsthemas mit Prof. Dr. Höß
science and the machine learning domain
• Understanding some of the most widely used machine learning methods
• Being able to implement a machine learning pipeline in order to solve real world problems [...] Voraussetzungen*
Prerequisites
This course is an introduction to ML. There is no need to have any prior knowledge about machine learning
*Hinweis: Beachten Sie auch die Voraussetzungen nach Prüf [...] limited to
linear regression and classification, Support vector machines and Deep neural networks.
3) Introduction to Python programming for data science.
4) Applying machine learning models on
science and the machine learning domain
• Understanding some of the most widely used machine learning methods
• Being able to implement a machine learning pipeline in order to solve real world problems [...] Voraussetzungen*
Prerequisites
This course is an introduction to ML. There is no need to have any prior knowledge about machine learning
*Hinweis: Beachten Sie auch die Voraussetzungen nach Prüf [...] limited to
linear regression and classification, Support vector machines and Deep neural networks.
3) Introduction to Python programming for data science.
4) Applying machine learning models on
Prüfungsvorbereitung: 30 h
Gesamtaufwand: 150 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden [...] 60 h
Prüfungsvorbereitung: 30 h
Gesamtzeit: 150 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden [...] Prüfungsvorbereitung: 30 h
Gesamtaufwand: 150 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden
attributed to
the normal response of currency holdings to the lowering of interest rates and to the
increase in income from the government stimulus. The remaining 80% may be due to an
increase [...] circulation of small, medium and large DM notes amounted to around €3 billion to €9 billion at the
end of January 2002. It declined to around €1 billion to €2 billion at the end of January 2003. This is
[...] period does not allow to establish a stable cointegration
relation, which seems to be due, in particular, to the early part of the sample.
20
We
presume that in order to estimate a suitable vector
you to act professionally in an industrial or trade-related context and to become active in design. As a Master's student, you will also be characterised by an improved ability to work in a team, to think [...] Logistics & Digitalization is not merely to impart specialist knowledge, but to develop your personal skills in a holistic way. Thus, the course offers you the opportunity to refine your social skills for cooperation [...] & Digitalizationn are characterized by their ability to develop and evaluate scientific approaches and methods and to successfully transfer them to companies or the scientific community (committees, a
mentoring program?
❖ to have the opportunity to share your experiences with young (future)
researchers and to offer them new perspectives and career paths.
❖ to contribute to enhancing the attractiveness [...] ss of our university and expanding
international partnerships.
❖ to inspire more people for your field of expertise.
❖ to meet new open-minded people and establish new cross-border connections
through [...] mentoring program 'careerSTEPS'?"
❖ Because we value and want to support your talent.
❖ Because you will have the opportunity to learn about what and how experts
work in a specific field and what their
mentoring program?
❖ to have the opportunity to share your experiences with young (future)
researchers and to offer them new perspectives and career paths.
❖ to contribute to enhancing the attractiveness [...] ss of our university and expanding
international partnerships.
❖ to inspire more people for your field of expertise.
❖ to meet new open-minded people and establish new cross-border connections
through [...] mentoring program 'careerSTEPS'?"
❖ Because we value and want to support your talent.
❖ Because you will have the opportunity to learn about what and how experts
work in a specific field and what their
depending on prior knowledge and study objective. We will be happy to advise you on your choice of module. It can also be helpful to take an Online-Selbsttest . Mathematics I Most intermediate-level topics [...] important for a successful start to your studies. In this module, you will gain an insight into physical ways of thinking and working using the example of mechanics and learn about essential physical quantities [...] decimals, terms) Length: 48 teaching units of 45 minutes each Course location: Weiden Dates : February to April; every 14 days on Saturdays (see also Further information ) Participation fee: 350,-€ Mathematics
schreiben und einen Lebenslauf verfassen.
kennen Standardsätze für Diskussionen (z. B. in Meetings), Telefo-
nieren und Präsentieren.
können technische Komponenten anhand von Beschreibungen [...] Erstellen eines Lebenslaufs, Telefonieren, Ge-
schäftsbriefe (Arten und Aufbau), typische Floskeln in Meetings, Erklä-
ren von Grafiken, Präsentationen
Technisches Englisch: Eigenschaften von Materialien [...] EI, Bac AI (Pflicht)
Studiensemester s. Studienplan
Lehrform/SWS Selbststudium / Blended Learning: 0 SWS
Arbeitsaufwand (Workload) 150 h
Empf. Voraussetzungen keine
Angestrebte Lern
inkl. Gewichtung *2
Type/scope incl. weighting
Zu prüfende Lernziele/Kompetenzen
Learning outcomes / competences to be assessed
Klausur 90 min. Gewichtung: 100% Über die Klausur werden die gesamten [...] inkl. Gewichtung *2
Type/scope incl. weighting
Zu prüfende Lernziele/Kompetenzen
Learning outcomes / competences to be assessed
Klausur 90 min. Gewichtung: 100% Über die Klausur werden die gesamten [...] inkl. Gewichtung *2
Type/scope incl. weighting
Zu prüfende Lernziele/Kompetenzen
Learning outcomes / competences to be assessed
Finanz-/Investitions-
wirtschaft:
Gewichtung: 100%
Hinweis: Die
will be on relating theoretical concepts to assessment and evaluation of practices in organizations.
Empirical projects will be analyzed to extract lessons learned and suggestions for improvement. Explorations [...] project work is used to test the entire learning
content and competency profiles, including the com-
petencies for presentation.
The assessed discussion contributions serve to dee-
pen the understanding [...] you are not eligible to sign up for more than 11 Advanced Modules or more than 4 Soft Skill Modules prior to having completed a minimum of 120
of 150 possible ECTS.
According to §6 (2) of the old Study
inkl. Gewichtung *2
Type/scope incl. weighting
Zu prüfende Lernziele/Kompetenzen
Learning outcomes / competences to be assessed
Klausur Klausurteil: Betriebswirtschaft
Dauer: 30 Minuten
Gewichtung: [...] inkl. Gewichtung *2
Type/scope incl. weighting
Zu prüfende Lernziele/Kompetenzen
Learning outcomes / competences to be assessed
Klausur 90 min. Gewichtung 100% Über die Klausur werden die gesamten [...] inkl. Gewichtung *2
Type/scope incl. weighting
Zu prüfende Lernziele/Kompetenzen
Learning outcomes / competences to be assessed
Kolloquium Gewichtung: 100% Über die Klausur werden die gesamten L
t: 60 h
Eigenstudium: 90 h
Gesamtaufwand: 150 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden [...] t: 60 h
Eigenstudium: 90 h
Gesamtaufwand: 150 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden [...] t: 60 h
Eigenstudium: 90 h
Gesamtaufwand: 150 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden
introduction to object-oriented programming, including an overview of the language syntax and how to develop simple
applications. Students will learn how to write custom classes and methods, and how to test their [...]
Learning Objectives/Competencies to be Assessed
Module work (ModA)
Project Work in Groups
-Details to follow-
The group project is used to test the practical learning content
and [...] bonus earned is forfeited. It is not possible to
transfer bonus points to repeat examinations.
The group project is used to test the practical learning content
and competence profiles, including teamwork
introduction to object-oriented programming, including an overview of the language syntax and how to develop simple
applications. Students will learn how to write custom classes and methods, and how to test their [...]
Learning Objectives/Competencies to be Assessed
Module work (ModA)
Project Work in Groups
-Details to follow-
The group project is used to test the practical learning content
and [...]
Learning Objectives/Competencies to be Assessed
Module work (ModA)
Project Work in Groups
50% Presentation, similar to board
presentation at annual shareholder meeting
50% written
Practical Machine Learning Tools and Techniques, Morgan Kaufmann, 2018.
A. Géron: Hands-on Machine Learning with Scikit-Learn, Keras and Tensor Flow, O’Reilly, 2019.
S. Raschka: Machine Learning mit Python [...] Verfahren des Supervised und des Unsupervised Learning
• Implementierung und Anwendung von Machine Learning-Methoden in einer Software-Bibliothek (z.B. Scikit-learn)
Lehrmaterial / Literatur
Teaching [...] TensorFlow 2 und Scikit-learn: das Praxis-Handbuch für Data Science, Deep Learning und
Predictive Analytics, mitp-Verlag, 2021.
C. M. Bishop: Pattern Recognition and Machine Learning, Springer Verlag, 2016
an_print true
Author kl
producer Microsoft: Print To PDF
access_permission:can_modify true
pdf:docinfo:producer Microsoft: Print To PDF
pdf:docinfo:created 2019-12-12T13:50:16Z
Microsoft [...] Definitive Guide to ARM Cortex-M3 and Cortex-M4 Processors, Newnes, 2013
D. W. Lewis: Fundamentals of Embedded Software with the ARM Cortex-M3, Pearson, 2012
M. Trevor: The Designer’s Guide to the Cortex-M [...] org.apache.tika.parser.pdf.PDFParser
creator kl
meta:author kl
pdf:producer Microsoft: Print To PDF
meta:creation-date 2019-12-12T13:50:16Z
created 2019-12-12T13:50:16Z
access_permissio
Practical Machine Learning Tools and Techniques, Morgan Kaufmann, 2018.
A. Géron: Hands-on Machine Learning with Scikit-Learn, Keras and Tensor Flow, O’Reilly, 2019.
S. Raschka: Machine Learning mit Python [...] Verfahren des Supervised und des Unsupervised Learning
• Implementierung und Anwendung von Machine Learning-Methoden in einer Software-Bibliothek (z.B. Scikit-learn)
Lehrmaterial / Literatur
Teaching [...] TensorFlow 2 und Scikit-learn: das Praxis-Handbuch für Data Science, Deep Learning und
Predictive Analytics, mitp-Verlag, 2021.
C. M. Bishop: Pattern Recognition and Machine Learning, Springer Verlag, 2016
, eLearning-
Elemente, Scrum-Projekt
150 h, davon:
Präsenzzeit: 60h (4 SWS * 15
Vorlesungswochen)
Selbststudium/Projektarbeit: 90 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes [...] Definitive Guide to ARM Cortex-M3 and Cortex-M4 Processors, Newnes, 2013
D. W. Lewis: Fundamentals of Embedded Software with the ARM Cortex-M3, Pearson, 2012
M. Trevor: The Designer’s Guide to the Cortex-M [...] davon
Präsenz: 60 h (4 SWS)
Eigenstudium: 90 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden
Definitive Guide to ARM Cortex-M3 and Cortex-M4 Processors, Newnes, 2013
D. W. Lewis: Fundamentals of Embedded Software with the ARM Cortex-M3, Pearson, 2012
M. Trevor: The Designer’s Guide to the Cortex-M [...] Kontaktstudium: 60 h (4 SWS)
Eigenstudium: 90 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden [...] ung des Präsenzunterrichts
und Projektarbeit)
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden