quarters Up to 4 4 to 8
2007Q4
Notes: RMSFE over time for the VAR with GDP growth, the term spread and currency.
Up to 4 (4 to 8) refers to an average RMSFE for horizons 1 to 4 (4 to 8).
[...] (gdp) refers to real GDP, (m1) to M1 plus sweeps into money market deposit accounts, (cu) to currency in circulation,
(cr_pr) to credit to the private non-financial sector) and (mo_pr) to total mortgages [...] background, our aim is to revisit
and explore the informational content of money and credit, in order to draw conclusions as to whether stronger attention
should be set on such variables to improve the forecasting
l Management &
Business Ethics
Master‘s Thesis (20 ECTS) & Colloquium (5 ECTS) & Service Learning (5 ECTS)
Summer Semester
(30 ECTS)
Winter Semester
(30 ECTS)
Final Semester
(30 ECTS)
[...] Innovation
= Electives on General Management, Corporate Responsibility & Key Qualifications (subject to change)
…
…
Last, but not least: Thanks to small student
groups, professors, lecturers and support
3 staff quickly get to know you by name. We
are quickly accessible and try to address any
problems that might [...] how industry
and businesses operate
To be successful, deep
knowledge in engineering or
management is not enough -
interdisciplinarity is key
In addition to knowledge,
further skills are essential: [...] universities
Many elective modules, entrepreneurship
and research projects to realize own
ideas, different study paths to address
different language levels
Understand and apply the necessary
technology
l Management &
Business Ethics
Master‘s Thesis (20 ECTS) & Colloquium (5 ECTS) & Service Learning (5 ECTS)
Summer Semester
(30 ECTS)
Winter Semester
(30 ECTS)
Final Semester
(30 ECTS)
[...] Innovation
= Electives on General Management, Corporate Responsibility & Key Qualifications (subject to change)
…
…
Foliennummer 1
true
Author Thomas Niehoff
producer Microsoft: Print To PDF
access_permission:can_modify true
pdf:docinfo:producer Microsoft: Print To PDF
pdf:docinfo:created 2024-11-28T07:55:31Z
Microsoft [...] PDFParser
creator Thomas Niehoff
meta:author Thomas Niehoff
pdf:producer Microsoft: Print To PDF
meta:creation-date 2024-11-28T07:55:31Z
created 2024-11-28T07:55:31Z
access_permissio [...] of Intent für Projektantrag
Keine Projektbeteiligung
OTH Regensburg
Förderprojekt LEAP Learning Poses
Bildverarbeitung
2018-
2021
50 % Gemeinsamer Mitarbeiter
"My approach to the problem of uncertainty over model selection is relatively simple:
Use a wide variety of models and don‘t ever trust any one of them too much.
But there seems to be much too [...] "uncle asking", relative to econometric
evidence. Skepticism about econometric estimates is one thing, and is highly
appropriate. But healthy skepticism should not be allowed to devolve into
econometric [...] offiziellen Stellungnahmen von Zentralbanken wie "within our
mandate, the ECB is ready to do whatever it takes to preserve the euro. And believe
me, it will be enough." (Draghi, 2012, bei Ankündigung
"My approach to the problem of uncertainty over model selection is relatively simple:
Use a wide variety of models and don‘t ever trust any one of them too much.
But there seems to be much too [...] "uncle asking", relative to econometric
evidence. Skepticism about econometric estimates is one thing, and is highly
appropriate. But healthy skepticism should not be allowed to devolve into
econometric [...] offiziellen Stellungnahmen von Zentralbanken wie "within our
mandate, the ECB is ready to do whatever it takes to preserve the euro. And believe
me, it will be enough." (Draghi, 2012, bei Ankündigung
"My approach to the problem of uncertainty over model selection is relatively simple:
Use a wide variety of models and don‘t ever trust any one of them too much.
But there seems to be much too [...] "uncle asking", relative to econometric
evidence. Skepticism about econometric estimates is one thing, and is highly
appropriate. But healthy skepticism should not be allowed to devolve into
econometric [...] offiziellen Stellungnahmen von Zentralbanken wie "within our
mandate, the ECB is ready to do whatever it takes to preserve the euro. And believe
me, it will be enough." (Draghi, 2012, bei Ankündigung
Prüfungsvorbereitung: 30 h
Gesamtaufwand: 150 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden [...] 60 h
Prüfungsvorbereitung: 30 h
Gesamtzeit: 150 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden [...] Prüfungsvorbereitung: 30 h
Gesamtaufwand: 150 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden
Machine Learning und Data Mining: Verständnis für die Anwendung von Machine-Learning- und Data-Mining-Techniken
auf geografische Daten, einschließlich Supervised Learning, Unsupervised Learning, Deep [...] Choroplethenkarten oder interaktive Dashboards.
• Geodatenanalyse mit Machine Learning: Anwendung von Machine-Learning-Algorithmen auf geografische Daten zur Vorhersage von
Ereignissen, Mustererkennung [...] 60 h Eigenstudium
30 h Prüfungsvorbereitung
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden
regulations to allow the
use of e-portfolios seems inevitable. Our test within the research project is not affected by
this.
2.2 Introducing students to e-portfolios
To introduce e-portfolios to the [...] tion to a course on product design and how the students are introduced to the use of
e-portfolios. We develop a three-step process, that supports i) the preparation of e-portfo-
lios (in advance to the [...] teaching
especially in MINT subjects [2]. Therefore we started to explore how to implement these
personal, user centered online spaces to store data and project progress from student pro-
jects at our
has been extended to more than 2 kHz as compared to about
800 kHz. On the other hand, it makes no sense to ”over-
compensate” the galvo system for higher frequencies, which
would lead to non tractable behavior [...] whose energy is to be minimized. As example,
we could take v(k) to be the (discrete) 2nd derivative of u(k).
In analogy to (10) we find
v = V0x(0) + V1u, (13)
and we are ready to formulate a functional [...] optical (geometric) mappings need to be considered.
To estimate both, we use a composite mapping algorithm.
As stimulus signals plane filling (fractal) curves proof to be
very useful. Once a reliable dynamic
has been extended to more than 2 kHz as compared to about
800 kHz. On the other hand, it makes no sense to ”over-
compensate” the galvo system for higher frequencies, which
would lead to non tractable behavior [...] whose energy is to be minimized. As example,
we could take v(k) to be the (discrete) 2nd derivative of u(k).
In analogy to (10) we find
v = V0x(0) + V1u, (13)
and we are ready to formulate a functional [...] optical (geometric) mappings need to be considered.
To estimate both, we use a composite mapping algorithm.
As stimulus signals plane filling (fractal) curves proof to be
very useful. Once a reliable dynamic
Machine Learning mit Scikit-Learn, Keras und TensorFlow“, O'Reilly; 2. Edition (2020)
Bishop, C.M.: „Pattern Recognition and Machine Learning“, Springer (2006)
Chollet, F.: „Deep Learning with Python“ [...] Seite 66 von 86
4.1.3 Machine Learning for Engineers – Einführung in Methoden und Werkzeuge
Machine Learning for Engineers – Introduction to Methods ans Tools
Zuordnung zum
Curriculum [...] verschiedener Algorithmen des
Machine Learning.
• Methodenkompetenz:
Die Studierenden sind befähigt, verschiedene Verfahren des Machine Learnings praktisch anzugehen und die Ergebnisse zu
Definitive Guide to ARM Cortex-M3 and Cortex-M4 Processors, Newnes, 2013
D. W. Lewis: Fundamentals of Embedded Software with the ARM Cortex-M3, Pearson, 2012
M. Trevor: The Designer’s Guide to the Cortex-M [...] bereitung Präsenzstudium, Prüfungs-
vorbereitung)
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die [...] Selbststudium: 90 h
Prüfungsvorbereitung: 60 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden
Financial Crisis
In order to gain additional insights into the model’s ability to explain monetary
developments, the observations for the period 2008 Q4 to 2010 Q4 are used to
produce out-of-sample forecasts [...] seems to interact with wealth and indebtedness. In order
to be able to more fully analyse the interaction between money holdings, con-
sumption and wealth, the financing of households needs to be modelled [...] (3) 409–438
a We are grateful to Mika Tujula for providing euro area household wealth data, to Gabe de
Bondt for sharing his equity market related measures and to Wolfgang Lemke for providing
his
Machine Learning mit Scikit-Learn, Keras und TensorFlow“, O'Reilly; 2. Edition (2020)
Bishop, C.M.: „Pattern Recognition and Machine Learning“, Springer (2006)
Chollet, F.: „Deep Learning with Python“ [...] Seite 66 von 85
4.1.3 Machine Learning for Engineers – Einführung in Methoden und Werkzeuge
Machine Learning for Engineers – Introduction to Methods ans Tools
Zuordnung zum
Curriculum [...] und verschiedener Algorithmen des
Machine Learning.
• Methodenkompetenz:
Die Studierenden sind befähigt, verschiedene Verfahren des Machine Learnings praktisch anzugehen und die Ergebnisse zu
building C010
Advice and Support
...in crisis situations or when
you simply need someone
to listen to you
international@oth-aw.de
Weiden: main building, C011
Amberg: MB/UT E 02
Support
… [...] E07
Weiden main building C011
Advice and Support
… with the organization of studies
... with learning diffi culties
... with time- and self-management
... with the fi nancing of studies
Online
building C010
Advice and Support
...in crisis situations or when
you simply need someone
to listen to you
international@oth-aw.de
Weiden: main building, C011
Amberg: MB/UT E 02
Support
… [...] E07
Weiden main building C011
Advice and Support
… with the organization of studies
... with learning diffi culties
... with time- and self-management
... with the fi nancing of studies
Online
building C010
Advice and Support
...in crisis situations or when
you simply need someone
to listen to you
international@oth-aw.de
Weiden: main building, C011
Amberg: MB/UT E 02
Support
… [...] E07
Weiden main building C011
Advice and Support
… with the organization of studies
... with learning diffi culties
... with time- and self-management
... with the fi nancing of studies
Online
DES MACHINE LEARNINGS
Machine Learning und Neuronale Netze
Deep Learning
Deep Vision
WEITERES
Intelligente Mobile Systeme
Natural Language Processing
Reinforcement Learning
Eingebettete [...] heckmann@oth-aw.de
+49 (9621) 482-3612
Studiengangsleiter
page
"One Link to rule them all, One Link to find them, …"
26. November 2023Fakultät Elektrotechnik, Medien, Informatik | EMI 4
Definitive Guide to ARM Cortex-M3 and Cortex-M4 Processors, Newnes, 2013
D. W. Lewis: Fundamentals of Embedded Software with the ARM Cortex-M3, Pearson, 2012
M. Trevor: The Designer’s Guide to the Cortex-M [...] bereitung Präsenzstudium, Prüfungs-
vorbereitung)
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden [...] Selbststudium: 90 h
Prüfungsvorbereitung: 60 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden
Nachbereitung
Prüfungsvorbereitung = 90 h
= 150 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden [...] Nachbereitung
Prüfungsvorbereitung = 90 h
= 150 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden [...] Selbststudium
Prüfungsvorbereitung = 90 h
= 150 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden
Nachbereitung
Prüfungsvorbereitung = 90 h
= 150 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden [...] Nachbereitung
Prüfungsvorbereitung = 90 h
= 150 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden [...] Selbststudium
Prüfungsvorbereitung = 90 h
= 150 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden
Nachbereitung
Prüfungsvorbereitung = 90 h
= 150 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden [...] Nachbereitung
Prüfungsvorbereitung = 90 h
= 150 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden [...] Nachbereitung
Prüfungsvorbereitung = 90 h
= 150 h
Lernziele / Qualifikationen des Moduls
Learning Outcomes
Nach dem erfolgreichen Absolvieren des Moduls verfügen die Studierenden über die folgenden